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LETTER TO THE EDITOR 

Eden growth on multifractal lattices 
Paul Meakin 
Central Research and Development Department, E I du Pont de Nemours and Company, 
Wilmington, DE 19898, USA 

Received 1 1  May 1987 

Abstract. A modified Eden model has been investigated in which the growth probabilities 
are determined by a fractal measure on the underlying lattice. Both the spatial distribution 
and probability distribution of surface sites on the growing clusters have been investigated. 
For the case where the multifractal substrate is constructed using a 2 x 2  multiplicative 
generator with the probabilities P,  = 1 ,  P2 = R, P3 = R' and P4 = R3,  the spatial distribution 
of surface sites and the sites comprising the inner and outer hulls have a fractal geometry 
which can be described by dimensionalities which depend on R. For the total surface this 
dimensionality converges to a value of about 1.76k0.01 as R + 0. For the inner and outer 
hulls the fractal dimensionality approaches a value of about 1.48 * 0.02. 

The Eden (1961) model for the growth of cell colonies is the most simple of the 
non-equilibrium growth models. Despite its apparent simplicity, a complete under- 
standing of some aspects of this model is still in the process of emerging. For this 
reason it has been studied extensively in recent years and a variety of modifications 
have been explored. In the original version of the Eden model the growth process is 
started with a single occupied lattice site and unoccupied surface sites (unoccupied 
sites with one or more occupied nearest neighbours) are occupied randomly with 
probabilities which are proportional to the number of occupied nearest neighbours. 
This model leads to compact structures (Richardson 1973) as do variations on the 
Eden model in which the growth probabilities depend only on the local environment 
(Meakin 1983). The surface of the structures grown using this model are of considerable 
interest (Plischke and Racz 1984, Family and Vicsek 1985, Jullien and Botet 1985a, b, 
Freche er a1 1985, Kardar et a1 1986, Hirsch and Wolf 1986, Zabolitzky and Stauffer 
1986, Meakin er a1 1986, Stauffer and Zabolitzky 1986) and represent one aspect of 
this model which is not yet fully understood (particularly in higher dimensions). In 
addition, the effects of lattice anisotropy on the overall structure of Eden clusters is 
an area of active investigation (Dhar 1986, Freche et a1 1985, Hirsch and Wolf 1985, 
Zabolitzky and Stauffer 1986, Meakin er al 1986). 

Most of the work on Eden models has been carried out on a simplified version in 
which unoccupied surface sites are selected randomly and occupied with equal proba- 
bility. The simplicity of these models allows very large structures (-10" sites) to be 
grown but uncertainties remain concerning the asymptotic scaling relationships which 
characterise their surfaces as a result of surprisingly large corrections to scaling. 
Recently Jullien and Botet (1985a, b) have introduced a third simple modification of 
the Eden model in which occupied surface sites are selected at random and a randomly 
selected unoccupied nearest-neighbour site is filled. This model seems to reduce the 
scaling corrections but uncertainties still remain concerning the surface structure 
associated with Eden models. Eden growth on fractal substrates (Mandelbrot 1982) 
has also been explored (Martin er a1 1984). These and other aspects of Eden models 
have been reviewed recently by Herrmann (1986). 
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Here we introduce a modification of the Eden model in which the growth prob- 
abilities are determined by a fractal measure associated with the lattice on which the 
growth process is occurring. The multifractal lattices used in the simulations are 
illustrated in figure 1. The generation of this type of fractal measure is discussed in 
the preceding letter (Meakin 1987a). Figure 1 illustrates the measure on a 128 x 128 
(2' x 2') square lattice at the seventh stage of iteration, using a generator of the type 
shown in figure 1(a)  of Meakin (1987a), for the case PI = 1, Pz=0.7, P3 =0.49 and 
P4 = 0.343. In the limit where the number of iterations, n, becomes infinite, the measure 
associated with each of the lattice sites (which has the form Pi PiP:Pi with i + j + k + I = 
n )  becomes a fractal measure or multifractal (Mandelbrot 1974, 1982, Halsey er a1 
1986a). The results reported here were obtained with multifractal lattices of the type 
PI = 1, Pz = R, P3 = R 2  and P4 = R 3 .  Similar simulations have been carried out for 
other cases of the general type illustrated in figure 1. A more complete description of 
these substrate lattices can be found elsewhere (Meakin 1987a, b). The same type of 
multifractal constructions have been used to represent atmospheric turbulence (Man- 
delbrot 1974, 1982, Frisch er a1 1978, Schertzer and Lovejoy 1983, Benzi et a1 1984, 
Lovejoy and Schertzer 1986). 

The Eden growth process starts with a single occupied lattice site and unoccupied 
surface sites are occupied randomly with probabilities which are proportional to the 
probability measure, p, associated with them. The simulations were carried out on 
1024 x 1024 (2"x 2") site square lattices (10 generations) and the growth process was 
continued until either 100 000 lattice sites were occupied or the edge of the lattice was 
reached by a cluster growing from the centre of the lattice. Figure 2(a)  shows a 77 648 
site cluster grown in this manner with the parameter R set to a value of 0.1 (P, = 1, 
Pz=O.l, P3 = IO-*, P4= low3). Figure 2(b) shows all of the unoccupied sites which are 
adjacent (nearest neighbours) to an unoccupied site on the cluster. These are the 
potential growth sites. Figure 2 ( c )  shows the 'inner' hull of the cluster. This hull 
consists of all of those occupied surface sites which can be reached from outside of 
the cluster by paths consisting of steps from the unoccupied sites to nearest-neighbour 
or next-nearest-neighbour unoccupied sites. For percolation clusters this hull has a 
fractal dimensionality which is close to or equal to $ (Voss 1984, Sapoval er a1 1985, 
Ziff 1986, Saleur and Duplantier 1987, Coniglio et a1 1987). Figure 2(d)  shows the 
'outer' hull of the cluster. This hull consists of all those unoccupied surface sites 
(potential growth sites) which can be reached from outside of the cluster by paths 
connecting unoccupied nearest neighbours only. For percolation clusters this hull has 
a fractal dimensionality which is equal to or close to 4 (Grossman and Aharony 1986, 
Meakin and Family 1986). Using the model described above, a number of clusters 
were grown to investigate the quantitative aspects of the model (425 with R = 0.8, 68 
with R =0.4, 34 with R =0.2 and 19 with R = 0.1). Figure 3 shows the two-point 
density correlation function C( r )  for the total surface (unoccupied sites), the internal 
hull and the external hull. In all cases a significant range of length scales is found 
over which these correlations have the power-law form characteristic of fractal struc- 
tures: 

C( r )  - r-LI D , = d - a .  (1) 
In equation (1) d is the Euclidean dimensionality of the lattice. It is also apparent 
from figure 3 that the correlation functions approach a limiting shape as R is reduced 
to smaller and smaller values. Table 1 summarises the results obtained for 0, using 
several values for R. These results suggest limiting ( R  + 0) fractal dimensionalities of 
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Figure 1. An illustration of the type of multifractal substrate used in this work. Repeated 
application of a generator of the type illustrated in figure l ( a )  of Meakin (1987a) to each 
of the elements in the system generates a multifractal measure on the lattice. Here the 
density of randomly placed points at each of the lattice sites is proportional to the value 
of the measure at that site. The width of the figure is 128 lattice units. 
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Figure 2. A cluster grown on the substrate with the generator P, = 1, P2 = R, P3 = R 2 ,  
P4= R3 (1024x 1024 lattice units or 10 generations). ( a )  shows the site occupied by the 
cluster, ( b )  shows all of the unoccupied surface sites, (c) and (d)  show the sites associated 
with the inner and outer hulls respectively. The cluster contains 77 648 sites and the width 
is 850 lattice units. 
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Figure 3. Density-density correlation functions obtained from Eden growth on multifractal 
substrates of the type P, = I ,  P2 = R, P, = R2 and P4= R3. ( a )  shows the correlation 
functions obtained from the total (unoccupied) surface, ( b )  and (c )  show the correlation 
functions for the inner and outer hulls, respectively, obtained for four different values of 
R=O.1,0.2,0.4and0.8.  

1.75*0.01 for the total surface and 1.48kO.02 for both the inner and outer hulls. A 
direct simulation in the limit R+O using 129 clusters led to values of 1.77kO.01, 
1.47kO.01 and 1.43 k0.01 for the total surface, inner hull and outer hull, respectively. 
The measure associated with each of the lattice sites has the form R"'. Simulations 
can be carried out in the limit R + 0 by including only those unoccupied surface sites 
with the smallest value of m in the list of growth sites during any particular stage in 
the growth process. The sites in the list are then selected with equal probability. 

A subject of considerable current interest is the distribution of growth probabilities 
in aggregation models (see Meakin er al 1985, Halsey et al 1986b, for example). This 
distribution of growth probabilities was measured for the clusters grown using the 
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Table 1. Effective fractal dimensionalities, D,, obtained from Eden growth on a multifractal 
lattice with the generator (see figure 1) given by P, = 1, Pz= R, P, = R 2  and P4= R'. The 
standard error obtained from the least squares fit is smaller than 0.002. However, systematic 
uncertainties are probably much larger. These results were obtained from the correlation 
functions shown in figure 3 .  

Internal hull External hull 
R Total surface 5 S r S 1 0 0  5 S r S 1 0 0  

0.8 1.1 16 
0.4 1.674 
0.2 1.753 
0.1 1.755 

0.103 
1.352 
1.448 
1.47 1 

1.103 
1.354 
1.437 
1.466 

model described above. The cluster growth process was stopped at 8 stages ( M  = 1000, 
2000,4000,8000,16 000,32 000,64 000 and 100 000 occupied sites) in order to measure 
the distribution of growth probabilities. Because of the finite size of the system and 
the way in which the multifractal substrate was constructed, there are only 3 1 possible 
values for the growth probability measure, p, at a particular lattice site (R', 
R ' ,  . . . , R3'). Figure 4 shows the fraction of sites, F,, with associated probabilities 
R"' for each of the 31 values of rn. This distribution is a discrete histogram, but each 
of the points in the histogram has been connected by a line to its neighbours to form 
a continuous curve. Also shown in figure 4 is the histogram for the substrate which 
(in the limit of a large number of generations) approaches a log-binomial distribution. 
Figure 4 shows that, as R becomes smaller, the distribution of growth probabilities 
becomes considerably narrower than the distribution of probabilities in the substrate. 
This is not surprising since sites with very high growth probabilities are strongly 
correlated with other sites of high growth probability and these regions will be filled 
rapidly once they become accessible to the growth process. Similarly the growth process 
will avoid regions with very low growth probabilities so that sites with low growth 
probabilities will rarely be found at the surface of the growing cluster. 

In contrast to most growth models, in which the distribution of growth probabilities 
becomes broader as the clusters grow, in this case this distribution becomes narrower. 
However, this is a result of the fact that we have averaged the growth probabilities 
over all clusters. If the growth probabilities were normalised for each cluster and then 
averaged, we would see the distribution of normalised growth probabilities grow with 
increasing cluster size and could use this information to estimate the function f ( a )  
describing the 'spectrum' of singularities in the growth probability measure (Halsey 
et a1 1986a). The distribution of normalised growth probabilities is presently under 
investigation. 

An interesting question which arises from these results is the dependence of the 
limiting ( R  + 0) fractal dimensionalities of the total surface and the hulls on the form 
of the generator. In this case we have used the generator 1, R, R2, R3 .  Will other 
generators (1, S, S, S 2  or 1, 1, T, T, for example) give the same limiting values? 
Additional computer simulations are being carried out to answer this question. 

It is reasonable to believe that there might be some connection between the R -* 0 
limit of this model and percolation. However, the fractal dimensionalities which we 
have obtained for the total surface and hulls seem to be approaching limiting values 
as R +. 0 which are not the same as those found in percolation. 
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Figure 4. Growth probability histograms for clusters to size 1000, 2000,4000, 8000, 16 000, 
32000, 64000 and 100000 occupied sites, for four different values of R = (a)  0.8, ( b )  0.4, 
( c )  0.2 and ( d )  0.1. These results were obtained from a large number of clusters with 
random growth sites and are averaged over all of the clusters. Consequently the distribution 
of growth probabilities is the same as that for the substrate (smooth curves labelled S )  for 
very small clusters and becomes narrower as high growth probability regions are filled and 
low probability regions are avoided. Here F, is the fraction of sites which have associated 
with them probabilities of R". 
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The ideas and motivation for this work were developed during a CECAM (Centre 
EuropCen pour le Calcul Atomique et MolCculaire) workshop on multifractals and 
during a visit to the Institute of Physics, University of Oslo. I would like to thank 
J Feder and T Jossang for their hospitality and encouragement. 
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